f_o_vec logo

f_o_vec

this is a small library that handles vectors in javascript, at least as good as it can be done UwU

instanciate vectors

            var o = f_o_vec2(23);
            f_assert_equals(o.toString(),'(23,23)');

            var o = f_o_vec2(23, 52);
            f_assert_equals(o.toString(),'(23,52)');

            var o = f_o_vec3(1, f_o_vec2(2,18));
            f_assert_equals(o.toString(),'(1,2,18)');

            var o = f_o_vec4(f_o_vec2(2, 3), 99, f_o_vec2(12, 13), 33);
            f_assert_equals(o.toString(),'(2,3,99,12)');

access vector components

            var o = f_o_vec4(2,3,4,5);

            f_assert_equals(o.x, 2)
            f_assert_equals(o.n_x, 2)
            f_assert_equals(o[0], 2)

            f_assert_equals(o.y, 3)
            f_assert_equals(o.n_y, 3)
            f_assert_equals(o[1], 3)

            f_assert_equals(o.z, 4)
            f_assert_equals(o.n_z, 4)
            f_assert_equals(o[2], 4)

            f_assert_equals(o.w, 5)
            f_assert_equals(o.n_w, 5)
            f_assert_equals(o[3], 5)

access components as array of numbers a_n_comp

            f_assert_equals(o.a_n_comp, [2,3,4,5])
            f_assert_equals(o.components, [2,3,4,5])
            f_assert_equals(o.a_o_comp.map(o=>o.value), [2,3,4,5])

            //set components
            var o = f_o_vec4(0);
            f_assert_equals(o.x+=1, 1)
            f_assert_equals(o.n_x+=1, 2)
            f_assert_equals(o[0]+=1, 3)

            // md: ## vector operations

add

            f_assert_equals(f_o_vec2(1,1).add(3,-2).toString(),'(4,-1)')

one number get converted to a vector of the same number of components so o_vec2.add(2) <=> o_vec2.add(f_o_vec2(2))

            f_assert_equals(f_o_vec2(4,8).add(10).toString(),'(14,18)')

operate with multiple parameters o_vec2.add(10, f_o_vec2(10,20), 200) <=> o_vec2 + vec2(10,10) + vec2(10,20) + vec2(200,200)

            f_assert_equals(f_o_vec2(4,8).add(10, f_o_vec2(10,20),200).toString(),'(224,238)') 

manipulate current reference 'in place'

if we want to cahnge the vector variable 'in place' we can do it by adding to the function name the 'eq' which stands for 'equal' vec2.addeq(10) => vec2 += vec2(10,10) vec2.subtracteq(10) => vec2 -= vec2(10,10) vec2.multiplyeq(10) => vec2 *= vec2(10,10) vec2.divideeq(10) => vec2 /= vec2(10,10) and so on... the vector gets changed in place

            let o = f_o_vec2(1,2);
            o.add(2,1)
            f_assert_equals(o.toString(),'(1,2)')// since we just called 'add', the vector is the same but 'add' returned a new vector
            o.addeq(2,1)// the vector has now been changed/updated
            f_assert_equals(o.toString(),'(3,3)')

subtract

            f_assert_equals(f_o_vec2(5,5).subtract(2,-2).toString(),'(3,7)')

multiply

            f_assert_equals(f_o_vec2(1,1).multiply(2,3).toString(),'(2,3)')

multiply

            f_assert_equals(f_o_vec2(4,3).divide(2,3).toString(),`(2,1)`)
            // md: ## other manipulations

length

            f_assert_equals(f_o_vec2(3,4).length(),5)
            f_assert_equals(f_o_vec3(8,11,16).length(),21)   

unfortunately there is no pythagorean quituple

            f_assert_equals(f_o_vec4(2,3,6,7).length(),9.899494936611665)  

normalize

            f_assert_equals(f_o_vec3(1,2,3).normalize().toString(),`(0.2672612419124244,0.5345224838248488,0.8017837257372732)`)
            var o = f_o_vec3(1,2,3);
            o.normalizeeq();
            f_assert_equals(o.toString(),`(0.2672612419124244,0.5345224838248488,0.8017837257372732)`)

fract (get part after decimal point)

            let o = f_o_vec2(12.8291214, 0.5534)
            o.fracteq()
            f_assert_equals(o.toString(),`(0.8291214,0.5534)`)

components operated on each other

            var n = f_o_vec3(1,2,3).componentsadded()
            f_assert_equals(n,6)//`1+2+3
            var n = f_o_vec3(1,2,3).componentssubtracted()
            f_assert_equals(n,-6)//`-1-2-3
            var n = f_o_vec3(1,2,3).componentsmultiplied()
            f_assert_equals(n,6)//`1*2*3
            var n = f_o_vec3(1,2,3).componentsdivided()
            f_assert_equals(n,0.16666666666666666)//`(1/2)/3

dot / dot product

            let n = f_o_vec2(2,3).dot(4,5)
            f_assert_equals(n,23)//`(2*4+3*5)=>(8+15)=>(23)`)

            let n2 = f_o_vec2(2,3).dot(f_o_vec2(4,5), f_o_vec2(10,20))
            f_assert_equals(n2,380)//`(2*4*10+3*5*20)=>(8*10+15*20)=>(80+300)=>(380)`)

dot / dot product

            var o = f_o_vec3(2,3,4).cross(5,6,7)
            f_assert_equals(o.toString(),'(-3,6,-3)')
            var o = f_o_vec3(2,3,4);
            o.crosseq(5,6,7)
            f_assert_equals(o.toString(),'(-3,6,-3)')
            var o = f_o_vec3(2,3,4);
            o.crosseq(1)
            f_assert_equals(o.toString(),'(-1,2,-1)')

sangle (smallest angle) between two vectors using the (dot/length*length) formula

            var n_ang = f_o_vec3(2,3,4).sangle(-5,6,-7)
            f_assert_equals(n_ang,1.9327554742236706)
            var n_ang_deg = f_o_vec3(2,3,4).sangle_deg(-5,6,-7)
            f_assert_equals(n_ang_deg,110.73873150382231)